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Abstract. Dimensional reduction and effective field theory methods are applied to the Two Higgs Doublet
Model at finite temperature. A sequence of two effective three-dimensional field theories which are valid on
successively longer distance scales is constructed. The resulting Lagrangian can be used to study different
aspects of the phase transition in this model as well as the sphaleron rate immediately after the phase
transition.

1 Introduction

The electroweak phase transition (EWPT) has been the
subject of intense investigation in recent years, largely due
to its possible role in generating the baryon asymmetry of
the present Universe [1-2] (see also [3] for a detailed re-
view). If the electroweak phase transition is of first order,
it proceeds through bubble nucleation, and the baryon
asymmetry is produced as the bubbles expand and the
Universe is far from equilibrium [1-2]. Moreover, if the
baryon asymmetry produced during the phase transition
has survived until today, baryon number violating pro-
cesses (sphaleron processes) must have been suppressed
immediately after the phase transition [4]. This requires
that the electroweak phase transition is strongly first or-
der [4]. It is now well established that this requirement
is not met in the Standard Model (SM); for realistic val-
ues of the Higgs mass, the phase transition is either too
weakly first order to suppress the sphaleron processes, or
it is second order, or there is no phase transition at all
[5]. Furthermore, it is not clear that the amount of CP
violation in the SM is sufficient.

The fact that baryogensis is ruled out in the Standard
Model suggests the investigation of extensions of the Stan-
dard Model such as the Minimal Supersymmetric Stan-
dard Model (MSSM) and the Two Higgs Doublet Model
(2HDM) [6]. Both these theories have additional sources of
CP violation. The main objective is to find regions in pa-
rameter space where the phase transition is strongly first
order, so that the excess of baryons produced during the
phase transition is not washed out by sphaleron processes
immediately after the phase transition.

The electroweak phase transition in the Standard
Model [7–9] as well as in the Two Higgs Doublet Model
[10–14] has been studied using resummed perturbation
theory. The strength of the EWPT in the Standard Model
weakens as the Higgs mass increases [7–9]. However, the
resummed loop expansion breaks down for large (realistic)

Higgs masses (see e.g. [8] for a discussion of the validity of
the resummed perturbation expansion), and so one must
employ nonperturbative methods in order to discriminate
between a weakly first order and a second order phase
transition.

The electroweak phase transition in the SM has also
been investigated by lattice simulations directly in four di-
mensions [15–17], renormalization group techniques [18–
19] and the ε-expansion [20]. These methods yield results
for the quantities characterizing the phase transition that
are in qualitative agreement with the perturbative treat-
ment.

Significant progress in the study of phase transitions
has been made by applying the methods of dimensional re-
duction [21–24] and effective field theory [25]. The idea is
to integrate out the nonzero bosonic modes as well as the
fermionic modes which decouple from the static modes at
high temperature [21–24]. One is then left with an effective
three-dimensional field theory of the zero modes. Since the
nonstatic modes have masses of order T , the process of
dimensional reduction is free of infrared problems, and in
weakly coupled theories this can normally be carried out
perturbatively. In nonabelian gauge theories the effective
three-dimensional theory contains two momentum scales
[26]. The scale gT is provided by the temporal component
of the gauge field, and the scale g2T is provided by the spa-
tial components of the gauge field. Moreover, in theories
with a single Higgs multiplet, the scalar mass is normally
of order g2T for temperatures close to Tc. For theories
with more than one Higgs multiplet, the masses of the ad-
ditional scalar fields are generally of order gT . In either
case it proves useful to construct a second effective field
theory by integrating out the timelike component of the
gauge field (and possibly some scalar fields) as shown by
Farakos et al. [27] and by Braaten and Nieto [28]. This ap-
proach has made effective field theory a very powerful tool
for studying field theories at high temperatures. Perturba-
tion theory breaks down for the resulting effective theory
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close to the phase transition and it is also severely in-
frared divergent in the symmetric phase. So one must use
nonperturbative methods such as lattice simulations to in-
vestigate the phase transition. Dimensional reduction has
been applied to a number of theories with spontaneously
broken gauge theories: SU(2)+Higgs [27,29–30], the Stan-
dard Model [31], the MSSM [32–36], SU(5)+Higgs [37],
the 2HDM [34] and U(1)+Higgs [27,38–39]. The three-
dimensional effective theories have been studied numeri-
cally in e.g. [40–44] for SU(2)+Higgs, in [45] in the case of
SU(2)×U(1)+Higgs, in [39,46-53] for U(1)+Higgs, and in
[54] for SU(3) × SU(2) with two scalar fields (The latter
arises as an effective 3d theory for MSSM for some values
of the parameters).

In the present paper we reconsider the Two Higgs Dou-
blet Model. The model is interesting in its own right, but
the 2HDM (with the temporal component of the gauge
field as an additional adjoint Higgs field) in 3d also arises
as an effective theory for the MSSM [31]. In [34] dimen-
sional reduction for this model was carried out in the one-
loop approximation. The second effective theory obtained
by integrating out the timelike component of the gauge
field was constructed in [32,34], also at the one-loop level.
In order to obtain a satisfactory accuracy for the thermo-
dynamic quantities describing the phase transition, the
scalar mass parameters in the 3d theory are needed to
two-loop order [31]. This calculation is carried out in the
present paper.

The plan of the article is as follows. In Sect. 2 we briefly
discuss the Lagrangian for the Two Higgs Doublet Model.
In Sect. 3 we present the parameters of the first effective
theory. Section 4 is devoted to the scenario where one of
the Higgs doublets is heavy, and is integrated out together
with the timelike component of the gauge fields. In Sect. 5
we consider the case where both

Higgs doublets are light and are retained in the final
effective Lagrangian. Finally, in Sect. 6 we summarize. In
Appendix A, the notation and conventions are given. We
also list the necessary sum-integrals in the underlying the-
ory as well as the three-dimensional integrals needed in
the effective theory. In Appendix B, some details of the
matching procedure are given by explicitly calculating a
mass parameter in the first effective theory.

2 Two Higgs doublet model

The Euclidean Lagrangian for the SU(2) gauge-invariant
2HDM without fermions reads

L =
1
4
GµνGµν + (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2)

+m2
1Φ

†
1Φ1 + m2

2Φ
†
2Φ2

+ m2
3(Φ

†
1Φ2 + Φ†

2Φ1) + V (Φ1, Φ2) . (1)

Here, Φ1 and Φ2 are the SU(2)-doublets

Φ1 =
1√
2

(
φ1 + iη1

φ2 + iη2

)
, Φ2 =

1√
2

(
φ3 + iη3

φ4 + iη4

)
. (2)

and
DµΦi =

(
∂µ − igτaAa

µ/2
)
Φi ,

Ga
µν = ∂µAa

ν − ∂νAa
µ + gεabcAb

µAc
ν .

(3)

Here, g is the gauge coupling, i = 1, 2 and τ1, τ2 and τ3

are the three Pauli matrices.
The potential V (Φ1, Φ2) is [5,32,34]

V (Φ1, Φ2) = λ1(Φ
†
1Φ1)2 + λ2(Φ

†
2Φ2)2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+λ5

[
(Φ†

1Φ2)(Φ
†
1Φ2) + (Φ†

2Φ1)(Φ
†
2Φ1)

]
+λ6

[
(Φ†

1Φ1)(Φ
†
2Φ1) + (Φ†

1Φ1)(Φ
†
1Φ2)

]
+λ7

[
(Φ†

2Φ2)(Φ
†
2Φ1) + (Φ†

2Φ2)(Φ
†
1Φ2)

]
,(4)

where the scalar self-couplings are denoted by λ1 − λ7.
All calculations in the present paper are carried in the
Landau gauge. This is merely a convenient choice, since
many diagrams vanish in this gauge. We emphasize that
the parameters of the effective Lagrangians are gauge fix-
ing independent.

3 Dimensional reduction

In this section we carry out the dimensional reduction step
for the Two Higgs Doublet Model.

The fields in the effective Lagrangian are identified (up
to normalizations) with the zero-frequency modes of the
fields in the full theory. If the fields in the effective theory
are denoted by Φ′

1, Φ′
2, A′

i and Aa′
0 , we can schematically

write at leading order

Φ′
i(x) ≈

√
T

∫ β

0
dτΦi(x, τ) ,

Aa′
i (x) ≈

√
T

∫ β

0
dτAa

i (x, τ) ,

Aa′
0 (x) ≈

√
T

∫ β

0
dτAa

0(x, τ) . (5)

The effective Lagrangian consists of all terms which can
built out of the fields Φ′

1, Φ′
2, A′

i and Aa′
0 and which satisfy

the symmetries present at high temperature. Examples of
symmetries are three-dimensional gauge invariance and an
O(3) symmetry for the field Aa′

0 . The effective Lagrangian
then reads

L′
eff =

1
4
G′

ijG
′
ij + (DiΦ

′
1)

†(DiΦ
′
1) + (DiΦ

′
2)

†(DiΦ
′
2)

+M2
1 (µ)Φ′†

1 Φ′
1 + M2

2 (µ)Φ′†
2 Φ′

2

+ M2
3 (Φ†

1Φ2 + Φ†
2Φ1) + V (Φ′

1, Φ
′
2) +

1
2
(DiA

a′
0 )2

+
1
2
m2

E(µ)(Aa′
0 )2 +

1
24

ΛE(µ)(Aa′
0 Aa′

0 )2 (6)

+h2
E(µ)Φ′†

1 Φ′
1A

a′
0 Aa′

0 + h2
E(µ)Φ′†

2 Φ′
2A

a′
0 Aa′

0 + δL′
eff .
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Here, we have explicitly written the superrenormalizable
part of the Lagrangian, while δL′

eff represents all higher
order operators consistent with the symmetries of the La-
grangian. The gauge coupling is denoted by g2

E(µ), the
quartic coupling constants in the potential V (Φ′

1, Φ
′
2) are

denoted by Λi(µ), and DiA
a
0 = (∂i+gEεabcAb

i )A
c
0. The pa-

rameters of L′
eff encode the physics at the scale T and are

called short-distance coefficients. The coefficients of the
effective Lagrangian are determined by calculating static
correlators in the full theory and calculating the corre-
sponding correlators in the effective theory and require
that they be equal at distances R � 1/T [27–28].

The matching procedure is complicated by the break-
down of the simple relations (5). Beyond leading order we
must allow for short-distance coefficients multiplying the
fields in the effective theory. At the one-loop level (next-
to-leading order), the short-distance coefficients are given
by the momentum dependent part of the two-point func-
tions, and are associated with field renormalizations in the
underlying theory. These parameters are called field nor-
malization constants, and are denoted by Σ(1)′(0), Π

(1)′
00

and Π(1)′ for the Higgs fields, the timelike component of
the gauge field and the spatial components of the gauge
field, respectively. The relation between the fundamental
scalar field Φi and the scalar field Φ′

i in the effective theory
can then schematically be written as

[
1 − Σ(1)′(0)

]1/2
Φ′

i(x) ≈
√

T

∫ β

0
dτΦi(x, τ), (7)

and similarly for the other fields. The above remarks also
apply when we consider the two effective three-dimensional
field theories in the next section.

The field normalization constants have been calculated
and listed by Kajantie et al. in [31] for the Standard Model
with N Higgs doublets. For N = 2, the results are

Σ′
1(0) = − 9g2

64π2 Lb ,

Π
(1)′
00 (0) = − g2

16π2

[
4Lb − 10

3

]
, (8)

Π(1)′(0) = − g2

16π2

[
4Lb +

2
3

]
.

The coupling constants of the scalar fields have been cal-
culated by Losada in [34] at the one-loop level. We list the
results here for completeness.

Λ1(µ) = λ1T − T

[
12λ2

1 + λ2
3 + λ3λ4 +

1
2
λ2

4 + 2λ2
5

+6λ2
6 − 9

2
λ1g

2 +
9
16

g4
]

Lb

16π2 +
3
8

g4T

16π2 , (9)

Λ2(µ) = λ2T − T

[
12λ2

2 + λ2
3 + λ3λ4 +

1
2
λ2

4 + 2λ2
5 + 6λ2

7

−9
2
λ2g

2 +
9
16

g4
]

Lb

16π2 +
3
8

g4T

16π2 , (10)

Λ3(µ) = λ3T − T

[
6λ1λ3 + 2λ1λ4 + 6λ2λ3 + 2λ2λ4 + 2λ2

3

+λ2
4 + 4λ2

5 + 2λ2
6 + 8λ6λ7

+ 2λ2
7 − 9

2
λ3g

2 +
9
8
g4
]

Lb

16π2 +
3
4

g4T

16π2 , (11)

Λ4(µ) = λ4T − T

[
2λ1λ4 + 2λ2λ4 + 4λ3λ4 + 2λ2

4 + 32λ2
5

+5λ2
6 + 2λ6λ7 + 5λ2

7 − 9
2
λ4g

2
]

Lb

16π2 , (12)

Λ5(µ) = λ5T − T

[
4λ1λ5 + 4λ2λ5 + 8λ3λ5 + 12λ4λ5

+5λ2
6 + 2λ6λ7 + 5λ2

7 − 9
2
λ5g

2
]

Lb

16π2 , (13)

Λ6(µ) = λ6T − T

[
12λ1λ6 + 3λ3λ6 + 3λ3λ7 + 4λ4λ6

+2λ4λ7 + 10λ5λ6 + 2λ5λ7 − 9
2
λ6g

2
]

Lb

16π2 , (14)

Λ7(µ) = λ7T − T

[
12λ2λ7 + 3λ3λ6 + 3λ3λ7 + 2λ4λ6

+4λ4λ7 + 2λ5λ6 + 10λ5λ7 − 9
2
λ7g

2
]

Lb

16π2 . (15)

The coupling constants g2
E(µ), h2

E(µ) and Λ4
E(µ) have

been computed in e.g. [31,34]:

g2
E(µ) = g2T

[
1 +

g2

16π2

(
7Lb +

2
3

)]
, (16)

h2
E(µ) =

1
4
g2T

[
1 +

g2

16π2

(
7Lb +

49
6

)

+
3λ1

4π2 +
λ3

4π2 +
λ4

8π2

]
, (17)

ΛE(µ) =
3g4T

8π2 . (18)

The coupling constants are all renormalization group in-
variant to this order, which can be verified by using the
renormaliztion group equations. This property holds to all
orders in perturbation theory if the effective Lagrangian
is restricted to superrenormalizable terms.

The scalar mass parameters have been computed in
the one-loop approximation by Losada in [34]. Here, we
present results for the mass parameters to two-loop order:

M2
1 (µ) = m2

1 −
[
6m2

1λ1 + 2m2
2λ3 + m2

2λ4 + 6m2
3λ6

−9
4
m2

1g
2
]

Lb

16π2

+
[
6Λ1 + 2Λ3 + Λ4 +

9
4
g2

E

]
T 2

12

+
T 2

16π2

[
3
4
λ1g

2 +
1
4
λ3g

2 +
1
8
λ4g

2 +
45
32

g4
]

− T 2

16π2

[
12λ2

1 + 2λ2
3 + 2λ3λ4 + 2λ2

4 + 12λ2
5

+9λ2
6 + 3λ2

7 − 9λ1g
2 − 3λ3g

2 − 3
2
λ4g

2 − 75
16

g4
]
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×
[
ln

3T

µ
+ c

]
, (19)

M2
2 (µ) = m2

2 −
[
6m2

2λ2 + 2m2
1λ3 + m2

1λ4 + 6m2
3λ7

−9
4
g2m2

2

]
Lb

16π2

+ (6Λ2 + 2Λ3 + Λ4 +
9
4
g2

E)
T 2

12

+
T 2

16π2

[
3
4
λ2g

2 +
1
4
λ3g

2 +
1
8
λ4g

2 +
45
32

g4
]

− T 2

16π2

[
12λ2

2 + 2λ2
3 + 2λ3λ4 + 2λ2

4 + 12λ2
5

+3λ2
6 + 9λ2

7 − 9λ2g
2 − 3λ3g

2 − 3
2
λ4g

2 − 75
16

g4
]

×
[
ln

3T

µ
+ c

]
, (20)

M2
3 (µ) = m2

3 −
[
m2

3λ3 + 2m2
3λ4 + 6m2

3λ5 + 3m2
1λ6

+3m2
2λ7 − 9

4
g2m2

3

]
Lb

16π2

+ (Λ6 + Λ7)
T 2

4
+

T 2

16π2

[
3
8
λ6g

2 +
3
8
λ7g

2
]

− T 2

16π2

[
6λ1λ6 + 6λ2λ7 + 3λ3λ6 + 3λ3λ7

+3λ4λ6 + 3λ4λ7 + 6λ5λ6 + 6λ5λ7

− 9
2
λ6g

2 − 9
2
λ7g

2
] [

ln
3T

µ
+ c

]
. (21)

Here, c is the constant [27]

c =
1
2

[
ln

8π

9
+

ζ ′(2)
ζ(2)

− 2γE

]
≈ −0.348725 . (22)

Note that we have written our mass parameters in terms
of the renormalization group invariant couplings of the
3d theory. The remaining dependence on µ reveals that
scalar mass parameters depend explicitly on the scale µ.
This dependence on the scale µ is canceled by the scale
dependence arising from calculations in the effective the-
ory.

The Debye mass is normally needed in the one-loop
approximation [31]

m2
E(µ) = g2T 2 . (23)

There is no dependence on µ at leading order in g2.

4 Integrating out Aa′
0

The next step is to integrate out the adjoint scalar triplet
Aa′

0 . This is carried out by calculating correlators in the
two theories at distances R � 1/gT and require that they
be the same [27–28]. The parameters in the effective the-
ory encode the physics on the scales T and gT and are

called middle-distance coefficients. Before doing this, how-
ever, we must determine the masses of the scalar doublets
near the phase transition. This is done by constructing the
scalar mass matrix and finding the temperatures at which
it has zero eigenvalues. The higher of these temperatures
is close to Tc, where the phase transition takes place and
the corresponding eigenvector (Higgs doublet) has a mass
of order g2T . The mass of the second scalar multiplet (af-
ter diagonalization) is determined near Tc and it is found
that it is generally of order gT and it should be integrated
out together with Aa′

0 [31]. Only with fine-tuning of the
parameters in the 2HDM, is it possible to obtain a mass of
order g2T [31]. In this case it must be kept in the second
effective Lagrangian. Both cases are considered below. The
diagonalization modifies the parameters of (7) and the re-
lations between the old and new parameters can be found
in [32,34]. In the following it is the rotated parameters
of (7) that appear in the formulas.

4.1 One heavy Higgs and one light Higgs

In this subsection we consider the case where one of the
Higgs fields (denoted by Φ′

2) is heavy and has a mass of or-
der gT . Hence, we integrate out this field together with the
adjoint Higgs field Aa

0 . The second effective field theory is
then SU(2)+one Higgs doublet with higher order opera-
tors satisfying the symmetries. The Lagrangian reads

L̃eff =
1
4
G̃ijG̃ij + M̃2

1 (µ)Φ̃†
1Φ̃1 + (DiΦ̃1)†(DiΦ̃1)

+Λ̃1(µ)(Φ̃†
1Φ̃1)2 + δL̃eff . (24)

The gauge coupling is denoted by g2
M (µ).

The field renormalization constant for the scalar field van-
ishes in the one-loop approximation, since there are no mo-
mentum dependent one-loop diagrams with internal Aa′

0 ’s.
Thus

Φ̃1(µ) ≈ Φ′
1(µ) . (25)

This is in contrast with the gauge fields, since there is a
momentum dependent one-loop diagram with Aa′

0 on the
internal lines and Aa′

i on the external lines. The result is
[32]

Ãa
i ≈ Aa′

i

[
1 +

g2
E

24πmE
+

g2
E

48πM2

]1/2

. (26)

The results for the coupling constants can be found in [32,
34]:

Λ̃1(µ) = Λ1(µ) − 1
16πM2

[2Λ2
3 + 2Λ3Λ4 + Λ2

4

+4Λ2
5 + 24Λ2

6 − 24Λ6Λ7] − 3h2
E

8πmE
, (27)

g2
M (µ) = g2

E(µ)
[
1 − g2

E

24πmE
− g2

E

48πM2

]
. (28)

The mass parameter has previously been computed by
Losada [34] at one-loop. The result in the two-loop ap-
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proximation is:

M̃2
1 (µ) = M2

1 (µ) − 1
4π

[
(2Λ3 + Λ4)M2 + 3h2

EmE

]
+

3
16π2 [2Λ2Λ3 + Λ2Λ4 + 6Λ6Λ7]

− 9
16π2 Λ2

6

[
ln

µ

M2
+

1
2

]

− 3
16π2 Λ2

7

[
ln

µ

3M2
+

1
2

]

− 1
16π2

[(
2Λ2

3 + 2Λ3Λ4 + 2Λ2
4 + 12Λ2

5

−3Λ3g
2
E − 3

2
Λ4g

2
E

)
ln

µ

2M2
+ Λ2

3 + Λ3Λ4 + Λ2
4

+6Λ2
5 − 3

4
Λ3g

2
E − 3

8
Λ4g

2
E

]

− 1
16π2

[(
6h4

E − 12h2
Eg2

E +
3
4
g4

E

)
ln

µ

2mE

+3h4
E − 3h2

Eg2
E

]
(29)

+
1

16π2

[
6h4

E

M2

mE
+ 3Λ3h

2
E

mE

M2
+

3
2
Λ4h

2
E

mE

M2

]
.

4.2 Two light Higgs doublets

In this subsection we consider the other scenario when
both Higgs fields have masses of order g2T . The effective
Lagrangian is now a three-dimensional 2HDM with addi-
tional higher order operators which satisfy the symmetries
at high temperature:

L̃eff =
1
4
G̃ijG̃ij + (DiΦ̃1)†(DiΦ̃1) + (DiΦ̃2)†(DiΦ̃2)

+ M̃2
1 (µ)Φ̃†

1Φ̃1 + M̃2
2 (µ)Φ̃†

2Φ̃2 (30)

+ M̃2
3 (µ)(Φ̃†

1Φ̃2 + Φ̃†
2Φ̃1) + V (Φ̃1, Φ̃2) + δL̃eff .

The scalar couplings are denoted by Λ̃i and the gauge cou-
pling by g2

M (µ).

Again the scalar fields are not renormalized by integrat-
ing out the Aa′

0 fields and so (25) also holds in the present
case. This is in contrast with the gauge fields, since there
is a trilinear coupling between Aa′

0 and Aa′
i :

Ãa
i ≈ Aa′

i

[
1 +

g2
E

24πmE

]1/2

. (31)

The scalar couplings Λ̃1(µ)−Λ̃3(µ) get modified by the
integrating out Aa

0 :

Λ̃1(µ) = Λ1(µ) − 3h4
E

8πmE
, Λ̃2(µ) = Λ2(µ) − 3h4

E

8πmE
,

Λ̃3(µ) = Λ3(µ) − 3h4
E

4πmE
. (32)

The other coupling constants, Λ̃4(µ)−Λ̃7(µ), are not mod-
ified in this step.

The gauge coupling reads

g2
M (µ) = g2

E(µ)
[
1 − g2

E

24πmE

]
. (33)

The expression for the mass parameters at the two-loop
level are

M̃2
1 (µ) = M2

1 (µ) − 3h2
EmE

4π

− 1
16π2

[(
6h4

E − 12h2
Eg2

E +
3
4
g4

E

)
ln

µ

2mE

+3h4
E − 3h2

Eg2
E

]
, (34)

M̃2
2 (µ) = M2

2 (µ) − 3h2
EmE

4π

− 1
16π2

[(
6h4

E − 12h2
Eg2

E +
3
4
g4

E

)
ln

µ

2mE

+3h4
E − 3h2

Eg2
E

]
, (35)

M̃3(µ) = M3(µ) . (36)

5 Summary

In the present paper I have applied the effective field the-
ory methods developed in [27-28] to the 2HDM. I have
exploited the fact that there are three well separated mo-
mentum scales and constructed a sequence of two effective
three-dimensional field theories. The parameters in the fi-
nal effective Lagrangian have previosuly been calculated
in the one-loop approximation [34]. The two-loop results
presented here are new.

The resulting field theory can be used for investigating
several aspects of the phase transition in the Two Higgs
Doublet Model. This includes in particular the strength of
the phase transition, and also the sphaleron rate immedi-
ately after the completion of the phase transition.

A Notation and conventions

Throughout the work we use the imaginary time formal-
ism, where the four-momentum is P = (p0,p) with P 2 =
p2
0 + p2. The Euclidean energy takes on discrete values,

p0 = 2nπT for bosons. Dimensional regularization is used
to regularize both infrared and ultraviolet divergences by
working in d = 4 − 2ε dimensions, and we apply the MS
renormalization scheme. We shall use the following nota-
tions for the sum-integrals that appear

∑∫
P

f(P ) ≡
(

eγE µ2

4π

)ε

T
∑

p0=2πnT

∫
d3−2εp

(2π)3−2ε
f(P ). (A.1)
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The one-loop sum-integrals needed in this work have
been calculated in e.g. [8,28,31]. We list them here for the
convenience of the reader:

∑∫
P

1
P 2 =

T 2

12
[1 + εlε] , (A.2)

∑∫
P

1
(P 2)2

=
1

16π2

[
1
ε

+ Lb + O(ε)
]

, (A.3)

∑∫
P

P 2
0

(P 2)2
= −T 2

24
[1 + ε(lε − 2)] , (A.4)

∑∫
P

P 2
0

(P 2)3
=

1
64π2

[
1
ε

+ Lb + 2 + O(ε)
]

, (A.5)

∑∫
P

P 4
0

(P 2)4
=

1
128π2

[
1
ε

+ Lb +
8
3

+ O(ε)
]

. (A.6)

Here

Lb = 2 ln
µ

4πT
+ 2γE ,

lε = 2 ln
µ

T
+ 2γE − 2 ln 2 − 2

ζ ′(2)
ζ(2)

. (A.7)

Moreover, γE is the Euler-Mascharoni constant and ζ(x)
is the Riemann Zeta function.

In the calculation of the mass parameters, we also need
the fact that two-loop setting sun diagram is zero [28]:

∑∫
PQ

1
P 2Q2(P + Q)2

= 0 . (A.8)

In the effective three-dimensional theory we also use di-
mensional regularization in 3 − 2ε dimensions to regular-
ize infrared and ultraviolet divergences. In analogy with
(A.1), we define

∫
p

f(p) ≡
(

eγE µ2

4π

)ε ∫
d3−2εp

(2π)3−2ε
f(p) . (A.9)

Again µ coincides with the renormalization scale in the
modified minimal subtraction renormalization scheme.

The one-loop and two-loop integrals needed are∫
p

1
p2 + m2 = − m

4π
[1 + O(ε)] , (A.10)∫

p

1
(p2 + m2

1)(p2 + m2
2)

=
1

4π(m1 + m2)
[1 + O(ε)] , (A.11)∫

pq

1
(p2 + m2

1)(q2 + m2
2)[(p − q)2 + m2

3]

=
1

16π2

[
1
4ε

+
1
2

+ ln
µ

m1 + m2 + m3
+ O(ε)

]
, (A.12)∫

pq

1
(p2 + m2)(q2 + m2)2(p − q)2

=
1

16π2m2

[
1
4

+ O(ε)
]

, (A.13)

∫
pq

1
(p2 + m2)(q2 + m2)(p − q)4

=
1

16π2m2

[
−1

8
+ O(ε)

]
. (A.14)

These integrals have been computed by several authors,
e.g. in [8,28,31].

B Matching example

In this appendix we explicitly show how the matching pro-
cedure is carried out by determining the mass parameter
M2

1 (Λ) to two-loop order.
We denote the static two-point function of the Higgs

field in the full theory by Γ
(2)
φ1,φ1

(k), and the static two-

point function in the effective theory by Γ
(2)
φ′

1,φ′
1
(k). The

corresponding self-energies are denoted by Σ(k) and Σ̃(k).
Finally, the n’th order contribution to the self-energies in
the loop expansion are denoted by Σ(n)(k) and Σ̃(n)(k).

The self-energies can be expanded in powers of the
external momentum k and so we can write the two-point
functions as

Γ
(2)
φ1,φ1

(k) = k2 + m2
1 + Σ(1)(0)

+k2Σ(1)′(0) + Σ(2)(0) , (B.1)

Γ
(2)
φ′

1,φ′
1
(k) = k2 + M2

1 (µ) + Σ̃(1)(0)

+k2Σ̃(1)′(0) + Σ̃(2)(0) + δM2
1 . (B.2)

Here, we have added a mass counterterm, which is asso-
ciated with mass renormalization. The mass parameter is
then determined by matching these two-point functions,
and by taking the field normalization constant into ac-
count, we can write the matching equation as

Γ
(2)
φ1,φ1

(k) =
[
1 + Σ(1)′(0)

]
Γ

(2)
φ′

1,φ′
1
(k) . (B.3)

Since the external momentum k provides the only mass
scale in the loop integrals contributing to the self-energy of
the effective theory, they all vanish in dimensional regular-
ization. The matching equation (B.3) can then be rewrit-
ten as

M2
1 (µ) = m2

1

[
1 − Σ(1)′(0)

]
+ Σ(1)(0)

[
1 − Σ(1)′(0)

]
+Σ(2)(0) − δM2

1 . (B.4)

The self-energy at one-loop order in the full theory reads:

Σ(1)(k)

= − [6m2
1λ1 + 2m2

2λ3 + m2
2λ4 + 6m2

3λ6
]∑∫

P

1
P 4

+
[
6λ1 + 2λ3 + λ4 +

3
4
(d − 1)g2

]∑∫
P

1
P 2

− 3g2∑∫
P

k2

P 2(P + K)2
+ 3g2∑∫

P

(pk)2

P 4(P + K)2
. (B.5)
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Expanding in powers of the external momentum k gives

Σ(1)(k) = − [6m2
1λ1 + 2m2

2λ3 + m2
2λ4 + 6m2

3λ6
]∑∫

P

1
P 4

+
[
6λ1 + 2λ3 + λ4 +

3
4
(d − 1)g2

]∑∫
P

1
P 2

− 9
4
g2k2∑∫

P

1
P 4 + O(k4/T 2) . (B.6)

This implies

Σ(1)(0) = − [6m2
1λ1 + 2m2

2λ3 + m2
2λ4 + 6m2

3λ6
]∑∫

P

1
P 4

+
[
6λ1 + 2λ3 + λ4 +

3
4
(d − 1)g2

]

×∑∫
P

1
P 2 , (B.7)

Σ(1)′(0) = −9
4
g2∑∫

P

1
P 4 . (B.8)

The two-loop contribution to the self-energy at zero ex-
ternal momentum is

Σ(2)(0) = −
[
36λ2

1 + 12λ1λ3 + 6λ1λ4 + 12λ2λ3 + 6λ2λ4

+4λ2
3 + 4λ3λ4 + λ2

4 + 18λ2
6 + 18λ6λ7

+
9
2
(d − 1)λ1g

2 +
3
2
(d − 1)λ3g

2

+
3
4
(d − 1)λ4g

2 +
1
2
(3d2 − 9d + 6)g4

]

×∑∫
PQ

1
P 2Q4 . (B.9)

After renormalization of the mass parameter m2
1 as well as

the coupling constants, we are left with a pole in ε. This
pole is canceled by the mass renormalization counterterm,
which is

δM2
1 =

[
12λ2

1 + 2λ2
3 + 2λ3λ4 + 2λ2

4 + 12λ2
5 + 9λ2

6 + 3λ2
7

−9λ1g
2 − 3λ3g

2 − 3
2
λ4g

2 − 75
16

g4
]

1
64π2ε

. (B.10)

This is the result for the mass counterterm of the three-
dimensional 2HDM at next-to-leading order in the cou-
pling constants. The mass parameter M2

1 (µ) is then given
by (19).
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